[image:]

10_DevOps_Deployment/DB_CICD_Pipeline_Guide.docx

CI/CD Pipeline Guide for Databricks

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	2.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Platform Engineering Team

1. Executive Summary
This comprehensive guide provides patterns for implementing CI/CD pipelines for Databricks workloads. It covers Git integration, Databricks Asset Bundles, infrastructure as code, testing strategies, and deployment automation across environments. Following these patterns enables teams to ship code faster with confidence while maintaining quality and security.
Why CI/CD for Databricks?
Traditional notebook-based development creates challenges:
No Version Control: Changes are difficult to track and roll back
Manual Deployments: Error-prone and inconsistent across environments
Limited Testing: No automated validation before deployment
Configuration Drift: Environments diverge over time
Audit Gaps: No clear record of who deployed what and when
Modern CI/CD addresses these challenges by:
Automating build, test, and deployment processes
Enforcing code review and quality gates
Ensuring consistent deployments across environments
Providing complete audit trails for compliance
2. CI/CD Architecture Overview
2.1 End-to-End Pipeline Architecture
┌───┐
│ DATABRICKS CI/CD ARCHITECTURE │
├───┤
│ │
│ DEVELOPMENT │
│ ┌───┐ │
│ │ Developer ──▶ Git Repos ──▶ Feature Branch ──▶ Pull Request │ │
│ │ │ │ │ │ │ │
│ │ ▼ ▼ ▼ ▼ │ │
│ │ Local IDE Databricks Unit Tests Code Review │ │
│ │ Repos (sync) │ │
│ └───┘ │
│ │ │
│ ▼ │
│ CI PIPELINE (GitHub Actions / Azure DevOps) │
│ ┌───┐ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │ Lint │ │ Unit │ │ Build │ │Integration│ │ │
│ │ │ Check │──▶│ Tests │──▶│ Bundle │──▶│ Tests │ │ │
│ │ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │ │
│ │ │ │ │ │ │ │
│ │ ▼ ▼ ▼ ▼ │ │
│ │ ruff/black pytest databricks pytest + │ │
│ │ sqlfluff coverage bundle build Databricks │ │
│ └───┘ │
│ │ │
│ ▼ │
│ CD PIPELINE │
│ ┌───┐ │
│ │ │ │
│ │ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐ │ │
│ │ │ DEVELOPMENT │───▶│ STAGING │───▶│ PRODUCTION │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ • Auto deploy │ │ • Manual gate │ │ • Approval │ │ │
│ │ │ • Feature test│ │ • UAT │ │ • Canary │ │ │
│ │ │ • Ephemeral │ │ • Load test │ │ • Blue-green │ │ │
│ │ └───────────────┘ └───────────────┘ └───────────────┘ │ │
│ │ │ │
│ └───┘ │
│ │
└───┘
2.2 Pipeline Stages Explained
	Stage
	Purpose
	Tools
	Quality Gates

	Lint
	Code style and syntax
	ruff, black, sqlfluff
	Must pass

	Unit Test
	Test business logic
	pytest
	>80% coverage

	Build
	Create deployable artifact
	Asset Bundles
	Successful build

	Integration Test
	Test with real services
	pytest + Databricks
	Critical paths pass

	Deploy Dev
	Validate in dev environment
	Asset Bundles
	Auto on PR

	Deploy Staging
	Pre-production validation
	Asset Bundles
	Manual approval

	Deploy Production
	Production release
	Asset Bundles
	Multi-approval

3. Git Integration
3.1 Repository Structure
A well-organized repository structure is crucial for maintainability:
my-databricks-project/
├── databricks.yml # Bundle configuration
├── resources/
│ ├── jobs/
│ │ ├── etl_pipeline.yml # Job definitions
│ │ └── ml_training.yml
│ ├── pipelines/
│ │ └── dlt_pipeline.yml # DLT pipeline definitions
│ └── dashboards/
│ └── sales_dashboard.yml
├── src/
│ ├── notebooks/
│ │ ├── bronze_ingestion.py # Notebook source
│ │ ├── silver_transformation.py
│ │ └── gold_aggregation.py
│ ├── libraries/
│ │ ├── data_quality/
│ │ │ ├── __init__.py
│ │ │ └── validators.py # Shared Python modules
│ │ └── utils/
│ │ ├── __init__.py
│ │ └── helpers.py
│ └── sql/
│ └── queries/
│ └── reports.sql
├── tests/
│ ├── unit/
│ │ └── test_validators.py # Unit tests
│ └── integration/
│ └── test_pipeline.py # Integration tests
├── environments/
│ ├── development.yml # Environment configs
│ ├── staging.yml
│ └── production.yml
├── .github/
│ └── workflows/
│ ├── ci.yml # CI workflow
│ └── cd.yml # CD workflow
├── pyproject.toml # Python project config
└── README.md
3.2 Databricks Repos Configuration
Databricks Repos provides native Git integration within the workspace:
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.workspace import CreateRepoRequest

w = WorkspaceClient()

Create a Git repo connection in Databricks
repo = w.repos.create(
 url="https://github.com/company/databricks-project.git",
 provider="github",
 path="/Repos/data-engineering/sales-pipeline"
)

Configure Git credentials (done once per user)
Best practice: Use personal access tokens or GitHub App tokens
Store credentials in Databricks secret scope

Pull latest changes programmatically
w.repos.update(
 repo_id=repo.id,
 branch="main"
)

Switch to a feature branch for development
w.repos.update(
 repo_id=repo.id,
 branch="feature/new-transformation"
)
3.3 Branch Strategy
Implement a Git branching strategy that matches your team's workflow:
┌───┐
│ GIT BRANCHING STRATEGY │
├───┤
│ │
│ main (production) │
│ ───●────────●─────────────────────●─────────────────────●──────────▶ │
│ │ ▲ ▲ ▲ │
│ │ │ │ │ │
│ release/1.0 │ release/1.1 │ release/2.0 │ │
│ ────────────┘ ───────────────────┘ ───────────────────┘ │
│ ▲ ▲ │
│ │ │ │
│ develop │ │ │
│ ───●──────●──────●────┴─────●──────●────────┴────●──────●─────────▶ │
│ │ │ ▲ │ ▲ │ ▲ │
│ │ │ │ │ │ │ │ │
│ │ │ feature/ │ feature/ │ feature/ │
│ │ │ user-auth │ new-dashboard │ ml-pipeline │
│ │ │ ─────────────┘ ─────────────────┘ ─────────────────┘ │
│ │ │ │
│ │ hotfix/critical-bug │
│ │ ────────────────────▶ (merged to main AND develop) │
│ │
└───┘
4. Databricks Asset Bundles
4.1 Bundle Configuration
Databricks Asset Bundles (DABs) provide infrastructure-as-code for Databricks resources:
databricks.yml - Main bundle configuration
bundle:
 name: sales-data-pipeline

Variables that can differ between environments
variables:
 warehouse_id:
 description: SQL Warehouse ID for queries
 catalog:
 description: Unity Catalog catalog name
 schema:
 description: Target schema name
 cluster_node_type:
 description: Instance type for compute clusters
 default: m5.xlarge

Workspace configuration
workspace:
 host: ${var.workspace_host}

Include resource definitions from separate files
include:
 - resources/jobs/*.yml
 - resources/pipelines/*.yml

Python wheel artifacts to build and deploy
artifacts:
 data_quality_wheel:
 type: whl
 path: ./src/libraries
 build: pip wheel . --wheel-dir dist --no-deps

Synchronization settings
sync:
 include:
 - src/notebooks/**
 - src/sql/**
 exclude:
 - "**/__pycache__"
 - "**/.pytest_cache"

Environment-specific configurations
targets:
 development:
 mode: development
 default: true
 workspace:
 host: https://dev-workspace.cloud.databricks.com
 variables:
 catalog: dev_catalog
 schema: sales_dev
 warehouse_id: abc123def456
 cluster_node_type: m5.large
 # Development mode creates resources with [dev] prefix
 # and current user's identity

 staging:
 mode: staging
 workspace:
 host: https://staging-workspace.cloud.databricks.com
 variables:
 catalog: staging_catalog
 schema: sales_staging
 warehouse_id: ghi789jkl012
 cluster_node_type: m5.xlarge

 production:
 mode: production
 workspace:
 host: https://prod-workspace.cloud.databricks.com
 variables:
 catalog: production_catalog
 schema: sales_prod
 warehouse_id: mno345pqr678
 cluster_node_type: m5.2xlarge
 # Production deployments run as service principal
 run_as:
 service_principal_name: production-etl-sp
4.2 Job Definitions
resources/jobs/etl_pipeline.yml
resources:
 jobs:
 sales_etl_pipeline:
 name: "Sales ETL Pipeline - ${bundle.target}"
 description: |
 Daily sales data ETL pipeline.
 Processes data from bronze → silver → gold layers.

 # Job cluster configuration
 job_clusters:
 - job_cluster_key: etl_cluster
 new_cluster:
 spark_version: "14.3.x-scala2.12"
 node_type_id: ${var.cluster_node_type}
 num_workers: 4
 spark_conf:
 spark.databricks.delta.optimizeWrite.enabled: "true"
 spark.databricks.delta.autoCompact.enabled: "true"
 custom_tags:
 Environment: ${bundle.target}
 Project: sales-pipeline

 # Task definitions
 tasks:
 - task_key: bronze_ingestion
 job_cluster_key: etl_cluster
 notebook_task:
 notebook_path: ../src/notebooks/bronze_ingestion.py
 base_parameters:
 catalog: ${var.catalog}
 schema: ${var.schema}
 source_path: /mnt/landing/sales/

 - task_key: silver_transformation
 depends_on:
 - task_key: bronze_ingestion
 job_cluster_key: etl_cluster
 notebook_task:
 notebook_path: ../src/notebooks/silver_transformation.py
 base_parameters:
 catalog: ${var.catalog}
 schema: ${var.schema}

 - task_key: gold_aggregation
 depends_on:
 - task_key: silver_transformation
 job_cluster_key: etl_cluster
 notebook_task:
 notebook_path: ../src/notebooks/gold_aggregation.py
 base_parameters:
 catalog: ${var.catalog}
 schema: ${var.schema}

 - task_key: data_quality_check
 depends_on:
 - task_key: gold_aggregation
 job_cluster_key: etl_cluster
 python_wheel_task:
 package_name: data_quality
 entry_point: run_checks
 parameters:
 - --catalog=${var.catalog}
 - --schema=${var.schema}
 libraries:
 - whl: ../dist/data_quality-*.whl

 # Schedule
 schedule:
 quartz_cron_expression: "0 0 6 * * ?"
 timezone_id: "America/New_York"

 # Alerts and notifications
 email_notifications:
 on_failure:
 - data-engineering@company.com
 on_success:
 - data-engineering-success@company.com

 # Retry configuration
 max_retries: 2
 retry_on_timeout: true

 # Tags for cost tracking
 tags:
 team: data-engineering
 cost_center: DE-001
4.3 DLT Pipeline Definitions
resources/pipelines/dlt_pipeline.yml
resources:
 pipelines:
 sales_dlt_pipeline:
 name: "Sales DLT Pipeline - ${bundle.target}"
 target: ${var.schema}_dlt
 catalog: ${var.catalog}

 # Pipeline configuration
 configuration:
 pipeline.environment: ${bundle.target}

 # Cluster configuration
 clusters:
 - label: default
 node_type_id: ${var.cluster_node_type}
 autoscale:
 min_workers: 1
 max_workers: 5

 # Notebook libraries
 libraries:
 - notebook:
 path: ../src/notebooks/dlt_bronze.py
 - notebook:
 path: ../src/notebooks/dlt_silver.py
 - notebook:
 path: ../src/notebooks/dlt_gold.py

 # Continuous vs triggered
 continuous: false

 # Development mode (allows schema changes)
 development: ${bundle.target == "development"}

 # Photon acceleration
 photon: true

 # Channel (current or preview)
 channel: CURRENT
5. CI Pipeline Implementation
5.1 GitHub Actions CI Workflow
.github/workflows/ci.yml
name: CI Pipeline

on:
 pull_request:
 branches: [main, develop]
 push:
 branches: [develop]

env:
 PYTHON_VERSION: "3.10"
 DATABRICKS_HOST: ${{ secrets.DATABRICKS_DEV_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_DEV_TOKEN }}

jobs:
 lint:
 name: Code Quality Checks
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4

 - name: Set up Python
 uses: actions/setup-python@v5
 with:
 python-version: ${{ env.PYTHON_VERSION }}

 - name: Install linting tools
 run: |
 pip install ruff black sqlfluff

 - name: Run ruff (Python linting)
 run: ruff check src/ tests/

 - name: Run black (code formatting check)
 run: black --check src/ tests/

 - name: Run sqlfluff (SQL linting)
 run: sqlfluff lint src/sql/ --dialect databricks

 unit-tests:
 name: Unit Tests
 runs-on: ubuntu-latest
 needs: lint
 steps:
 - uses: actions/checkout@v4

 - name: Set up Python
 uses: actions/setup-python@v5
 with:
 python-version: ${{ env.PYTHON_VERSION }}

 - name: Install dependencies
 run: |
 pip install -e ./src/libraries[dev]
 pip install pytest pytest-cov

 - name: Run unit tests with coverage
 run: |
 pytest tests/unit/ \
 --cov=src/libraries \
 --cov-report=xml \
 --cov-report=term \
 --cov-fail-under=80

 - name: Upload coverage report
 uses: codecov/codecov-action@v4
 with:
 files: coverage.xml

 build:
 name: Build Bundle
 runs-on: ubuntu-latest
 needs: unit-tests
 steps:
 - uses: actions/checkout@v4

 - name: Set up Python
 uses: actions/setup-python@v5
 with:
 python-version: ${{ env.PYTHON_VERSION }}

 - name: Install Databricks CLI
 run: pip install databricks-cli

 - name: Validate bundle configuration
 run: databricks bundle validate -t development

 - name: Build Python wheel
 run: |
 pip install build
 cd src/libraries && python -m build

 - name: Upload build artifacts
 uses: actions/upload-artifact@v4
 with:
 name: bundle-artifacts
 path: |
 src/libraries/dist/*.whl
 databricks.yml
 resources/

 integration-tests:
 name: Integration Tests
 runs-on: ubuntu-latest
 needs: build
 if: github.event_name == 'pull_request'
 steps:
 - uses: actions/checkout@v4

 - name: Download build artifacts
 uses: actions/download-artifact@v4
 with:
 name: bundle-artifacts

 - name: Set up Python
 uses: actions/setup-python@v5
 with:
 python-version: ${{ env.PYTHON_VERSION }}

 - name: Install dependencies
 run: |
 pip install databricks-sdk pytest

 - name: Deploy to dev workspace (ephemeral)
 run: |
 databricks bundle deploy -t development

 - name: Run integration tests
 run: |
 pytest tests/integration/ \
 --databricks-host=${{ env.DATABRICKS_HOST }} \
 --databricks-token=${{ env.DATABRICKS_TOKEN }}

 - name: Cleanup ephemeral resources
 if: always()
 run: |
 databricks bundle destroy -t development --auto-approve
5.2 Azure DevOps CI Pipeline
azure-pipelines-ci.yml
trigger:
 branches:
 include:
 - develop
 - feature/*

pr:
 branches:
 include:
 - main
 - develop

pool:
 vmImage: 'ubuntu-latest'

variables:
 pythonVersion: '3.10'
 databricksHost: $(DATABRICKS_DEV_HOST)

stages:
 - stage: Validate
 displayName: 'Validate Code'
 jobs:
 - job: Lint
 displayName: 'Lint and Format Check'
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: '$(pythonVersion)'

 - script: |
 pip install ruff black sqlfluff
 ruff check src/ tests/
 black --check src/ tests/
 sqlfluff lint src/sql/ --dialect databricks
 displayName: 'Run linters'

 - job: UnitTest
 displayName: 'Unit Tests'
 dependsOn: Lint
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: '$(pythonVersion)'

 - script: |
 pip install -e ./src/libraries[dev]
 pip install pytest pytest-cov pytest-azurepipelines
 displayName: 'Install dependencies'

 - script: |
 pytest tests/unit/ \
 --cov=src/libraries \
 --cov-report=xml \
 --cov-report=html \
 --junitxml=test-results.xml
 displayName: 'Run unit tests'

 - task: PublishTestResults@2
 inputs:
 testResultsFormat: 'JUnit'
 testResultsFiles: 'test-results.xml'

 - task: PublishCodeCoverageResults@1
 inputs:
 codeCoverageTool: 'Cobertura'
 summaryFileLocation: 'coverage.xml'

 - stage: Build
 displayName: 'Build Artifacts'
 dependsOn: Validate
 jobs:
 - job: BuildBundle
 displayName: 'Build Databricks Bundle'
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: '$(pythonVersion)'

 - script: |
 pip install databricks-cli build
 databricks bundle validate -t development
 displayName: 'Validate bundle'

 - script: |
 cd src/libraries && python -m build
 displayName: 'Build Python wheel'

 - task: PublishBuildArtifacts@1
 inputs:
 pathToPublish: 'src/libraries/dist'
 artifactName: 'wheel'
6. CD Pipeline Implementation
6.1 GitHub Actions CD Workflow
.github/workflows/cd.yml
name: CD Pipeline

on:
 push:
 branches: [main]
 workflow_dispatch:
 inputs:
 environment:
 description: 'Target environment'
 required: true
 default: 'staging'
 type: choice
 options:
 - staging
 - production

env:
 PYTHON_VERSION: "3.10"

jobs:
 deploy-staging:
 name: Deploy to Staging
 runs-on: ubuntu-latest
 environment: staging
 steps:
 - uses: actions/checkout@v4

 - name: Set up Python
 uses: actions/setup-python@v5
 with:
 python-version: ${{ env.PYTHON_VERSION }}

 - name: Install Databricks CLI
 run: pip install databricks-cli

 - name: Build wheel artifact
 run: |
 pip install build
 cd src/libraries && python -m build

 - name: Deploy to Staging
 env:
 DATABRICKS_HOST: ${{ secrets.DATABRICKS_STAGING_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_STAGING_TOKEN }}
 run: |
 databricks bundle deploy -t staging

 - name: Run smoke tests
 env:
 DATABRICKS_HOST: ${{ secrets.DATABRICKS_STAGING_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_STAGING_TOKEN }}
 run: |
 # Trigger a test run of the pipeline
 databricks bundle run sales_etl_pipeline -t staging --refresh-all

 deploy-production:
 name: Deploy to Production
 runs-on: ubuntu-latest
 needs: deploy-staging
 environment: production
 if: github.ref == 'refs/heads/main'
 steps:
 - uses: actions/checkout@v4

 - name: Set up Python
 uses: actions/setup-python@v5
 with:
 python-version: ${{ env.PYTHON_VERSION }}

 - name: Install Databricks CLI
 run: pip install databricks-cli

 - name: Build wheel artifact
 run: |
 pip install build
 cd src/libraries && python -m build

 - name: Deploy to Production
 env:
 DATABRICKS_HOST: ${{ secrets.DATABRICKS_PROD_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_PROD_TOKEN }}
 run: |
 databricks bundle deploy -t production

 - name: Verify deployment
 env:
 DATABRICKS_HOST: ${{ secrets.DATABRICKS_PROD_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_PROD_TOKEN }}
 run: |
 # List deployed resources
 databricks bundle summary -t production
7. Testing Strategies
7.1 Unit Testing with pytest
tests/unit/test_validators.py
import pytest
from data_quality.validators import DataValidator

class TestDataValidator:
 """Unit tests for data validation logic."""

 @pytest.fixture
 def validator(self):
 """Create validator instance for testing."""
 return DataValidator()

 def test_validate_email_valid(self, validator):
 """Test email validation with valid emails."""
 valid_emails = [
 "user@example.com",
 "user.name@domain.co.uk",
 "user+tag@example.org"
]
 for email in valid_emails:
 assert validator.validate_email(email) is True

 def test_validate_email_invalid(self, validator):
 """Test email validation with invalid emails."""
 invalid_emails = [
 "invalid-email",
 "@domain.com",
 "user@",
 ""
]
 for email in invalid_emails:
 assert validator.validate_email(email) is False

 def test_validate_amount_positive(self, validator):
 """Test amount validation for positive values."""
 assert validator.validate_amount(100.50) is True
 assert validator.validate_amount(0.01) is True

 def test_validate_amount_negative(self, validator):
 """Test amount validation rejects negative values."""
 assert validator.validate_amount(-100) is False
 assert validator.validate_amount(0) is False

 @pytest.mark.parametrize("date_str,expected", [
 ("2025-01-29", True),
 ("2025-13-01", False),
 ("invalid", False),
 ("", False),
])
 def test_validate_date(self, validator, date_str, expected):
 """Test date validation with various inputs."""
 assert validator.validate_date(date_str) is expected
7.2 Integration Testing with Databricks
tests/integration/test_pipeline.py
import pytest
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.jobs import RunLifeCycleState

@pytest.fixture(scope="module")
def workspace_client():
 """Create Databricks workspace client."""
 return WorkspaceClient()

@pytest.fixture(scope="module")
def test_catalog():
 """Return test catalog name."""
 return "test_catalog"

class TestETLPipeline:
 """Integration tests for ETL pipeline."""

 def test_bronze_table_created(self, workspace_client, test_catalog):
 """Verify bronze table is created with expected schema."""
 table_info = workspace_client.tables.get(
 full_name=f"{test_catalog}.sales_test.bronze_transactions"
)
 assert table_info is not None
 assert "transaction_id" in [col.name for col in table_info.columns]
 assert "amount" in [col.name for col in table_info.columns]

 def test_data_quality_constraints(self, workspace_client, test_catalog):
 """Verify data quality constraints are enforced."""
 # Query for constraint violations
 result = workspace_client.statement_execution.execute_statement(
 warehouse_id="test_warehouse",
 statement=f"""
 SELECT COUNT(*) as violations
 FROM {test_catalog}.sales_test.silver_transactions
 WHERE amount <= 0 OR customer_id IS NULL
 """
)
 violations = result.result.data_array[0][0]
 assert int(violations) == 0, "Data quality violations found"

 def test_gold_aggregations_accurate(self, workspace_client, test_catalog):
 """Verify gold layer aggregations are accurate."""
 # Compare aggregated totals
 result = workspace_client.statement_execution.execute_statement(
 warehouse_id="test_warehouse",
 statement=f"""
 WITH silver_totals AS (
 SELECT SUM(amount) as total FROM {test_catalog}.sales_test.silver_transactions
),
 gold_totals AS (
 SELECT SUM(total_amount) as total FROM {test_catalog}.sales_test.gold_daily_sales
)
 SELECT ABS(s.total - g.total) < 0.01 as totals_match
 FROM silver_totals s, gold_totals g
 """
)
 assert result.result.data_array[0][0] == "true"
8. Best Practices
8.1 CI/CD Checklist
	Category
	Best Practice
	Priority

	Source Control
	All code in Git
	Required

	Source Control
	Branch protection rules
	Required

	Source Control
	Pull request reviews
	Required

	Testing
	Unit tests with >80% coverage
	Required

	Testing
	Integration tests for critical paths
	Required

	Testing
	Automated test execution
	Required

	Security
	Secrets in vault (not code)
	Required

	Security
	Service principals for deployments
	Required

	Security
	Least privilege access
	Required

	Deployment
	Environment separation
	Required

	Deployment
	Approval gates for production
	Required

	Deployment
	Rollback capability
	Required

	Monitoring
	Deployment notifications
	Recommended

	Monitoring
	Post-deployment validation
	Recommended

8.2 Secrets Management
Never store secrets in code!
Use GitHub Secrets, Azure Key Vault, or similar

.github/workflows/cd.yml
env:
 # Reference secrets from GitHub Secrets
 DATABRICKS_HOST: ${{ secrets.DATABRICKS_HOST }}
 DATABRICKS_TOKEN: ${{ secrets.DATABRICKS_TOKEN }}
 # Or use OIDC for tokenless authentication
In Databricks notebooks, use secret scopes
db_password = dbutils.secrets.get(
 scope="production-secrets",
 key="database-password"
)
Document Control
	Version
	Date
	Author
	Changes

	1.0
	2025-01-24
	Platform Team
	Initial document

	2.0
	2025-01-29
	Platform Team
	Added testing strategies, Azure DevOps examples

This document is maintained by the Platform Engineering Team. For questions or updates, contact the team via the #platform-engineering Slack channel.
image1.png
#MAST=CH
DIGITAL

